10/3/2025

CONGRESOS, CURSOS Y CONFERENCIAS

Seminario del Departamento de Física de la Materia Condensada “Superconductor 3D Nanoarchitectures” por Vladimir Fomin

Jueves 13 de marzo de 2025, 12:30 h, Sala de Grados de la Facultad de Ciencias de la Universidad de Zaragoza

El jueves 13 de marzo de 2025 se celebrará una nueva sesión del ciclo de Seminarios del Departamento de Física de la Materia Condensada de la Universidad de Zaragoza, que en esta sesión contará con Vladimir Fomin, del Institute for Emerging Electronic Technologies (IET), Leibniz Institute for Solid State and Materials Research Dresden (IFW), Dresden, que ofrecerá la conferencia titulada “Superconductor 3D Nanoarchitectures”.

La sesión tendrá lugar a las 12:30 horas en la Sala de Grados de la Facultad de Ciencias de la Universidad de Zaragoza.

Resumen de la conferencia (en inglés):

In 3D superconductor nanoarchitectures, enabled by the advanced high-tech fabrication techniques, a topological transition between the vortex- and phase-slip-regime determines the magnetic-field-voltage and current-voltage characteristics revealing a non trivial topology of SC screening currents. An abrupt switch-on of the transport current triggers the transition from the vortex- to phase-slip-regime in superconductor open nanotubes. Various dynamic topological transitions in them take place under a combined dc+ac transport current. Vortex chains, vortex jets, and phase-slip regimes occur in superconductor open nanotubes due to the in homogeneity of the normal magnetic field component, leading to microwave generation.

Resumen de su currículo (en inglés):

Ph.D.degree (State University of Moldova, 1978), Doctorhabilitat (Academy of Sciences of Moldova, 1990), University Professor in Theoretical Physics (SUM, 1999), Diploma of a Scientific Discovery (Academy of Natural Science sof Russia, 1999). Honorary Member of the ASM (2007). Since2009, Research Professor at Leibniz IFW Dresden. Research expertise in nanophysics: topological effects in quantum rings, topology- and geometry-induced properties of 3D superconductor micro- and nanoarchitectures and patterned superconductors, topological states of light and spin-orbit coupling in optical microcavities, optical properties of quantum dots, thermoelectric properties of semiconductor nanoarchitectures, phonons, vibrational excitations and polaronic effects in nanostructures, magnetopolarons and magneto-Raman scattering in TMDs.

    Compartir: