EJERCICIOS DE CARÁCTER ECONÓMICO DE INTEGRAL INDEFINIDA

1. El coste marginal de fabricación de un determinado producto es $CMg(q) = 8 - \frac{3}{\sqrt{q}}$. Sabiendo que el coste fijo es de 10000 euros, hallar la función de coste total de fabricación de dicho producto.

Solución

La función de coste marginal es la derivada de la función de coste total, CT(q), es decir, CMq(q) = CT'(q). Por tanto,

$$CT(q) = \int CMg(q) dq = \int \left(8 - \frac{3}{\sqrt{q}}\right) dq = \int 8dq - 2.3 \int \frac{1}{2\sqrt{q}} dq = 8q - 6\sqrt{q} + C$$

Para determinar la constante de integración C, se ha de tener en cuenta que el coste fijo es el coste cuando la producción es cero, es decir, CT(0) = 10000. Imponiendo esta condición en la expresión $CT(q) = 8q - 6\sqrt{q} + C$ queda CT(0) = C = 10000.

Por tanto, la función de coste total es $CT(q) = 8q - 6\sqrt{q} + 10000$

2. Se estima que dentro de t meses la población de un municipio cambiará a razón de $6 + 7(t+1)^{3/4}$ personas por mes. Si la población actual es de 5000 personas, ¿cuál será la población dentro de 15 meses?

Solución

Llamando N(t) a la función que da la población del municipio dentro de t meses, se sabe que $N'(t) = 6 + 7(t+1)^{3/4}$. Por tanto,

$$N(t) = \int \left(6 + 7(t+1)^{3/4}\right) dt = 6t + 7\frac{(t+1)^{7/4}}{7/4} + C = 6t + 4\sqrt[4]{(t+1)^7} + C = 6t + 4(t+1)\sqrt[4]{(t+1)^3} + C.$$

Para determinar la constante de integración C, se ha de tener en cuenta la condición de que la población actual es de 5000 personas, es decir, N(0) = 5000. Sustituyendo en la expresión $N(t) = 6t + 4(t+1)\sqrt[4]{(t+1)^3} + C$ queda N(0) = 4 + C = 5000, de donde, C = 4996.

Por tanto,
$$N(t) = 6t + 4(t+1)\sqrt[4]{(t+1)^3} + 4996$$

Luego la población dentro de 15 meses será $N(15) = 6.15 + 4.16\sqrt[4]{16^3} + 4996 = 5598$ personas.

3. Se sabe que el beneficio marginal que se obtiene al vender x unidades de un determinado producto viene dado por la función $BMg(x) = 300 - \frac{400}{(x+1)^2}$. Calcular la función beneficio sabiendo

que si no se vende ninguna unidad hay unas pérdidas de 150 unidades monetarias.

Solución

La función beneficio marginal es la derivada de la función de beneficio total, B(x), es decir, BMg(x) = B'(x). Por tanto,

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

Unidad didáctica 8. Introducción a la integración

Autoras: Gloria Jarne, Esperanza Minguillón, Trinidad Zabal

$$B(x) = \int BMg(x) dx = \int \left(300 - \frac{400}{(x+1)^2}\right) dx = \int 300 dx - 400 \int (x+1)^{-2} dx =$$

$$= 300x - 400 \frac{(x+1)^{-1}}{-1} + C = 300x + \frac{400}{x+1} + C$$

Para determinar la constante de integración C, se ha de tener en cuenta que si no se vende ninguna unidad hay unas pérdidas de 150 unidades monetarias, es decir, B(0) = -150. Imponiendo esta condición en la expresión $B(x) = 300x + \frac{400}{x+1} + C$ queda B(0) = 400 + C = -150, es decir, C = -550

Por tanto, la función beneficio es $B(x) = 300x + \frac{400}{x+1} - 550$

4. Determinar la función de coste total sabiendo que el coste marginal en función de la producción viene dado por $CMg(q) = e^q - 3q$ y que el coste fijo es de 100 u. m.

Solución

La función de coste marginal es la derivada de la función de coste total, CT(q), es decir, CMg(q) = CT'(q). Por tanto,

$$CT(q) = \int CMg(q) dq = \int (e^q - 3q) dq = e^q - \frac{3}{2}q^2 + C$$

Para determinar la constante de integración C, se ha de tener en cuenta que el coste fijo es el coste cuando la producción es cero, es decir, CT(0) = 100. Imponiendo esta condición en la expresión $CT(q) = e^q - \frac{3}{2}q^2 + C$ queda CT(0) = 1 + C = 100, C = 99

Por tanto, la función de coste total es $CT(q) = e^q - \frac{3}{2}q^2 + 99$