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Foreword
This book builds on the demand created by Professor Thanh’s 
earlier volume Magnetic Nanoparticles: From Fabrication to 
Clinical Applications. The editor is a well-known and highly 
respected research scientist, well versed in many aspects of 
nanoscience and especially in this particular topic. 

In the earlier volume, the foundations for making magnetic 
nanoparticles were clearly set out and it became apparent that 
another book would be needed to give scientists and clinicians a 
guide to what is happening in this field as the subject translates 
from the laboratory towards clinical practice. Inevitably, there 
is a very slight overlap with the earlier volume, and the first 
four chapters of this new book cover some new synthesis routes 
not covered in the earlier volume, which include methods of 
varying the particle size and shape, of the creation of chains of 
nanoparticles and the coating of metal particles by carbon and 
using bio-inspired methods for synthesis. These chapters, like 
many others in the book, deal with the potential applications 
and give very fair appraisals of the strengths and weaknesses 
of their approaches. Professor Thanh is to be congratulated in 
urging the many authors to be as objective as possible! 

Surface functionalization is the key to most applications 
of nanoparticles of all types, and this is especially important 
here. There are several chapters devoted to the topic, and it 
recurs in many of the specific application chapters. It is very 
helpful to have available the many approaches that are in use 
in one book. Magnetic particles have the potential to enhance 
contrast in MRI images, and this topic receives detailed atten-
tion from several authors. 

Magnetic particles hold the promise for separation of 
biomolecules and enhancing biosensing. There are chapters 
covering all of the current aspects of this very important 
application, both in vitro and in vivo. This enables the manip-
ulation and sorting of cells and internal components of cells, 
such as mitochondria, and it is an area in which we will see 
increasing utility. 

Health issues are always paramount in any use of nano-
technology, and several chapters deal with this with specific 
regard to the magnetic nanoparticles that are being developed 
for medical applications. The subject of the fate and possible 
toxicity of all types of nanoparticles is still debated and we 
are now getting a much more clear and objective view of these 
issues.

Magnetic hyperthermia is receiving a lot of attention 
because it has the possibility of offering a purely physical, 
nonchemical method of destroying cancerous cells. Added to 
this is the magnetically guided therapy afforded by direct-
ing a drug-loaded particle precisely to a site in the body, and 
this raises the question about the transport of nanoparticles 
through porous body tissue, which is dealt with in a complete 
chapter. 

Imaging is important in medicine, and additional modali-
ties can be added to particles designed for magnetic resonance 
imaging (MRI), and this aspect is described in several chap-
ters and for various future clinical applications.

Finally, the considerations of Good Manufacturing Practice 
are discussed with respect to magnetic nanoparticles, and this 
is a useful chapter for all of the contemporary clinical applica-
tions of nanoparticles.

Having been asked to write this Foreword, I read the indi-
vidual chapters and I found that it is very difficult to stop! 
Each set of specialist authors has produced a fascinating and 
informative review of their subject matter. This will render the 
book as a useful tool for learning about almost every aspect of 
magnetic nanoparticles for clinical application. It is therefore 
recommended for a wide range of readers, from students to 
research professors and medical practitioners, and it forms a 
good companion to Professor Thanh’s earlier book.

Peter J. Dobson, OBE
The Queen’s College, Oxford
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Preface
More than six years ago, when I wrote the preface for 
the book Magnetic Nanoparticles: From Fabrication to 
Clinical Applications (http://www.crcpress.com/product 
/isbn/9781439869321), it did not occur to me that I would 
write another one so soon. However, at every conference 
I attended, I saw the burgeoning research of magnetic 
nanoparticles (NPs). I could not help wanting to try to cap-
ture the most cutting-edge discovery and ever-expanding 
research in this field. With the success of the first book, it 
was a tall order to get this book right as well (e.g. being com-
prehensive, with 26 chapters, serving a wide audience from 
early-year research students to professors and being useful 
not only to practitioners but also to researchers who would 
like to join the field). 

The current book is not overlapping with the first one, but 
complementary, and covers areas the first book did not, such 
as the extensive background and development of magnetic 
NPs (MNPs) as negative and positive contrast agents for mag-
netic resonance imaging. The ‘Fabrication’ part of the book 
covers different synthetic methods for iron oxide MNPs, the 
mechanism of NP formation, how to control the dimensions 
and morphology of NPs, which is essential for the optimiza-
tion of their properties. New magnetic nanostructures, such as 
nanochains and carbon-coated magnetic metal NPs, as well 
as bio-inspired synthesis of MNPs are covered. 

Very detailed strategies for biofunctionalization of 
MNPs, and their interaction with the biological environment, 
are beautifully covered. A new framework to experimen-
tally take NP syntheses in the laboratory towards scalable 
manufacturing, including not only the synthesis but also 
surface modification, is covered to address the outstanding 
challenge of creating robust and reproducible syntheses of 
functionalized NPs. For the biofunctionalization of NPs, 
polymersomes and multidentate polymers are of particular 
interest for the stability they provide to the MNPs. Magnetic 
core–mesoporous silica shell composites with improved 
drug payloads and the ability to tune the drug release are 
presented. 

In vivo applications, including high- and low-gradient 
magnetic separations with distinctive separation mecha-
nisms, are discussed for biomedical diagnostics. Magnetic 
separation in integrated micro-analytical systems and mag-
netic separation of cellular organelles such as endosomes, 
exosomes and mitochondria are introduced. MNP-based 
biosensing with giant magnetoresistance biosensors and 
Hall sensors are reviewed. 

Preceding in vivo applications, immunotoxicity and safety 
considerations for iron oxide NPs and the impact of MNPs on 
human health should be investigated. It is fascinating to see 
the idea of using nanorobots to navigate in multiscale complex 
vascular networks to deliver cancer therapy in addition to the 
extensive research on magnetic hyperthermia. MNPs used for 
drug delivery in Alzheimer’s disease, as well as for on-demand 
drug delivery devices based on a magnetic sponge, which are 
transported in complex media, are presented. When magnetic 
cores are functionalized with molecules such as nerve growth 
factors or neuroprotective molecules, multifunctional devices 
can be developed for neurological diseases, specifically those 
based on the use of engineered MNPs applied to neuroprotec-
tion and neuroregeneration.

For in vivo applications, red blood cells were used as car-
riers for NP-based MRI and magnetic particle imaging con-
trast agents to prolong their circulation in the bloodstream. 
The advantages of nuclear imaging of radiolabeled MNPs 
for biomedical applications and roadmap for developing and 
imaging radiolabeled NPs are covered. Stimuli-regulated 
cancer theranostics based on MNPs such as internal stimuli-
responsive NPs, including pH, reduction-sensitive NPs and 
external stimuli-inductive NPs, such as magnetic field- and 
light-controlled NPs, is also presented.

Finally, establishing large-scale good manufacturing prac-
tice (GMP) compliant NPs is the prerequisite to successfully 
translate the laboratory-scale synthesis to commercial prod-
ucts. The importance of continuous manufacturing methods 
enables the control of critical quality attributes with adjustment 
of production parameters, which are also closely monitored 
with in-process controls, are highlighted. 

Similarly with the first book, the chapters were written by 
world-leading experts in the broad range of disciplines (e.g. 
physics, chemistry, biochemistry, biology, medicine, engi-
neering and entrepreneurship). They not only present the 
most cutting-edge research for active scientists in the field but 
also provide the fundamental knowledge to enable students 
and other incoming researchers to take steps to translate their 
technologies to clinics.

Nguyễn T. K. Thanh, FRSC
Biophysics Group

Department of Physics and Astronomy
University College London

London, United Kingdom
Email: ntk.thanh@ucl.ac.uk

http://www.crcpress.com
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emailto:ntk.thanh@ucl.ac.uk
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22.1  HISTORICAL SUMMARY 
AND STATE OF THE ART

Nerve damage and neurological pathologies are two prob-
lems of significant medical and economic impact because of 
the hurdles of losing nerve functionality as a consequence of 
nerve injury or degenerative diseases (ND). Nerve regenera-
tion is a complex biological phenomenon.1 In the peripheral 
nervous system (PNS), nerves regenerate spontaneously only 
when injuries are minor. Short gaps can be repaired directly 
by mobilization of the proximal and distal stumps with end-
to-end coaptation and epineural suturing. Long nerve gaps 
greater than 2 cm require additional material to bridge the 
defect. The current repair method is the use of autologous 
nerve grafts (autografts), which provide the regenerating axons 
with a natural guidance channel populated with functioning 
Schwann cells surrounded by their basal lamina.1 Nerve auto-
grafting, however, is far from an optimal treatment, and there 
is suboptimal functional recovery despite technical excellence. 
These grafts are taken primarily from the sural nerve of the 
patient. Surveys of the clinical literature show that approxi-
mately half of patients with median and ulnar nerve repairs 
experience satisfactory motor and sensory recovery.2 The main 
reasons for the poor functional recovery rates associated with 

autografts are unavailability of motor nerves (these grafts are 
primarily sensory) and mismatch in axonal size.3 The use of 
autograft has also the disadvantages associated to the require-
ment for a second surgical site (donor site morbidity, donor site 
mismatch and the possibility of painful neuroma formation 
and scarring).4 The use of nerve guidance conduits (NGCs) 
is the only clinically approved alternative to the autograft for 
the treatment of large peripheral nerve injuries. They provide a 
conduit during the nerve regeneration process for the diffusion 
of growth factors secreted by the injured nerve ends and to 
limit the injury site infiltration by scar tissue.5 However, com-
mercially available devices, based on biodegradable polymer 
or collagen-based hollow tubes, do not match the regenerative 
levels of autografts, providing good performances only for 
short defects (<2 cm) but poor functional recovery for longer 
nerve gaps.6 Current knowledge suggests combining the use 
of NGCs with strategies of molecular or cellular therapies. 
Molecular therapies deals with the delivery of molecules such 
as guidance cues (netrins, ephrins, semaphorins and other 
molecules capable of orientating migrating and growing cells) 
and factors influencing neuronal growth (e.g. growth factors, 
neurotransmitters, extracellular matrix proteins).7 Cell thera-
pies involve cell transplantation to reduce tissue loss, promote 
axonal regeneration, facilitate myelination of axons or promote 
the secretion of factors sustaining the regeneration process. 
The nanotechnology applied to neural development, repair and 
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protection aspire to implement these approaches for optimal 
regeneration and recovery of function and to solve those draw-
backs arising from the invasiveness of macroscopic implants, 
including the dependence of the overall performance of such 
implants to physiological reactions (e.g. fibrosis). Low inva-
siveness and high selectivity of the growth stimulation are usu-
ally conflicting requirements and thus new approaches must be 
pursued in order to overcome such limitations.

Repairing therapies for those injuries of the central ner-
vous system (CNS) of either the brain or spinal cord are much 
more challenging. Because the brain coordinates all higher-
level functions and communicates with the PNS through the 
spinal cord, the cellular responses to a mechanical insult and 
posttrauma situation are numerous, and they are not well 
understood. Anyhow, once the CNS injury is produced, it 
initiates a cascade of deleterious events that can affect both 
cell body and axonal function, resulting in continued dysfunc-
tion and prolonged degeneration. For this type of CNS dam-
age, cell therapy is the only therapeutic strategy that proved 
to work so far. Injured central axons do not spontaneously 
regenerate. However, the knowledge accumulated during 
the last two decades challenged the notion that neurons of 
CNS lack regeneration ability. Although in the 19th century 
Santiago Ramon y Cajal first suggested the idea that central 
axons could regenerate but the CNS does not offer a permis-
sive environment, the extended concept of neuroregeneration, 
including the possibility of neurogenesis and neuroplasticity 
is a relatively recent one. The notion that neurogenesis is pos-
sible led to the idea of implanting viable cells as a therapeu-
tically sound approach in neuroscience. Experimentally, this 
was demonstrated by transplanting a sciatic nerve explant into 
optic nerve lesions: the optical nerve regenerated across the 
graft but growth ceased as soon axons had crossed the graft 
and reached the interface with the CNS.8 It is likely that the 
regenerative potential of central axons is expressed when the 
CNS glial environment is changed to that of the PNS.9 It was 
proposed to bypass the problem by transplanting some spe-
cific cell type, which could provide a permissive environment 
for elongated axon growth, similarly to the Schwann cells of 
peripheral nerves.10 Thirty years later this hypothesis was 
tested for the first time in a 38-year-old male with a complete 
chronic thoracic spinal cord injury (SCI). This patient received 
an autologous sural nerve graft to bridge an 8-mm gap and 
the transplantation of glia olfactory ensheathing cells (OECs) 
in the proximal and distal nerve stumps; he experienced 
functional regeneration of supraspinal connections.11 Some 
of clinical studies using cell therapy have been or are being 
conducted for the treatment of chronic SCI,* traumatic SCI,† 
amyotrophic lateral sclerosis,‡ Parkinson’s Disease,§ cervical 
and thoracic SCI,¶ age-related macular degeneration,** etc. 

* www.clinicaltrials.gov. Studies ref. NCT01772810, NCT02688049
† www.clinicaltrials.gov. Study ref. NCT02326662
‡ www.clinicaltrials.gov. Studies refs. NCT01730716, NCT01640067, 

NCT01348451
§ www.clinicaltrials.gov. Study ref. NCT02452723
¶ www.clinicaltrials.gov. Studies refs. NCT02163876, NCT01321333
** www.clinicaltrials.gov. Study ref. NCT01632527

These are early stage trials (phase I/II) to assess the safety of 
the treatment, which is essentially unknown despite a large 
amount of data available from preclinical experimentation.

Nanotechnology comes into neuroscience to provide addi-
tional ways to tackle the above-mentioned problems. Since 
nanoparticles (NPs), and more generally nanostructures, can 
be made small enough to interact with subcellular structures, 
the possibilities of intracellular targeting and actuation on 
damaged neural cells are countless. Inorganic NPs can be 
engineered as drug carriers alone for releasing neuroregen-
erative drugs, as reported using hollow silica NPs with porous 
walls to control the drug release kinetics.12 Also, different 
physical properties of the NP’s core or coating can be used to 
trigger the release, providing spatial and temporal control of 
the dose. The possibility of surface functionalization of NPs 
adds potential increase of specificity and/or hydrophobicity 
solutions for already existing therapeutic drugs. Among these 
strategies, the use of noncontact forces such as magnetic fields 
provides alternatives for remote NP actuation and activation. 
This chapter will focus on the new solutions nanotechnology 
can provide for neurological diseases, through engineered 
MNPs applied to neuroprotection and neuroregeneration. 
Also, the application of MNPs as magnetic actuators to posi-
tion or guide neural cells by an external magnetic field will 
be described and discussed. In the first part we have included 
a description of the magnetism related to MNPs, as well as 
the theoretical framework for magnetic field interactions 
with biological systems. In the second part of the chapter, we 
offered an outline of the different strategies based on the use 
of MNPs and magnetic fields, applied to (a) neuroprotection 
in neurodegenerative diseases and (b) nerve regeneration fol-
lowing injury. We also describe and discuss those relevant 
MNP-based strategies successfully employed to remotely 
guide neuronal growth under the action of magnetic fields.

22.2  MAGNETISM OF SINGLE- DOMAIN 
NANOPARTICLES

The possibility of remote actuation on a nanoscale object has been 
understood since long ago as a way to manipulate biological sys-
tems.13 From the physical point of view, the action-at-a-distance 
is a consequence of the interaction among any magnetic dipole 
(the basic entity in magnetostatics) having magnetic moment m 
and the magnetic flux density B, also known as magnetic induc-
tion.14 In the general case, the force on a magnetic moment m 
exerted under a magnetic induction B is given by the expression

 F m B= ∇ ⋅( ),  (22.1)

where the spatial derivative implies that a nonuniform field 
is required to apply forces. In addition, the B field exerts a 
torque N = m × B on the magnetic moment m that will align 
the dipole parallel to B. Therefore, for those applications that 
require maximizing the magnetic forces between the external 
field B and the magnetic moment μ of the MNPs, the usual 
strategies rely on (a) the design of optimized magnetic field 

http://www.clinicaltrials.gov
http://www.clinicaltrials.gov
http://www.clinicaltrials.gov
http://www.clinicaltrials.gov
http://www.clinicaltrials.gov
http://www.clinicaltrials.gov
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profiles, and (b) the synthesis of MNPs with large magnetic 
moments. The former choice is rather old and there is an 
extensive bibliography on numerical methods and magnetic 
field configurations.15–17 For a comprehensive review of nano-
magnetism and magnetic properties of MNPs the reader is 
referred to the comprehensive work of D. Ortega (Chapter 1: 
Structure and Magnetism in Magnetic Nanoparticles in the 
book Magnetic Nanoparticle: From Fabrication to Clinical 
Applications).18

The choice of the material for the magnetic core of MNPs 
is related to the physical and magnetic properties of the corre-
sponding bulk phase. However, below a given critical particle 
diameter d < dcrit (with 30 ≤ dcrit ≤ 100 nm, depending on the 
material’s nature) the magnetic structure of the particle’s core 
is different than the bulk material in the sense that domain 
walls collapse into a single magnetic domain. A deeper analy-
sis of the concepts of magnetic domains, magnetic order in 
small particles and superparamagnetism is beyond the scope 
of this chapter, and the reader is referred to Ortega15 and 
the classic book by B.D. Cullity6 (Chapter 8). The value of 
dcrit is determined by the magnetic anisotropy (K) and the 
exchange stiffness coefficient (A) of the bulk material, and 
d < dcrit defines a size regime below which the magnetic cores 
are magnetically ordered in a single direction. Therefore, this 
spin alignment results in a net magnetic moment of several 
hundreds of Bohr magnetons (Bohr magneton is the elemen-
tary unit of magnetic moment, defined in SI units in terms of 
the electron charge e, and mass me, and the reduced Planck 
constant ℏ, by μB = eℏ/2me). The magnetostatic energy of a 
single-domain MNP (i.e. the magnetic energy in the presence 
of an externally applied magnetic field) is proportional to its 
volume V, and this energy competes with the thermal energy 
to keep the magnetic moment spatially fixed.16 Around room 
temperature (i.e. within the 25–45°C range), where most bio-
medical uses occur, the thermal energy can be of the same 
order than the magnetostatic energy for small applied fields. 
Therefore, the thermally induced magnetic relaxation impairs 
the magnetic alignment of m and B diminishing the magneti-
zation at low fields. For MNPs with average size <30 nm ther-
mal relaxation is predominant and thus affects the efficacy of 
those biomedical applications that require full magnetic satu-
ration at room temperature. For these applications, the design 
of MNPs must consider average particle size and/or magnetic 
anisotropy large enough to prevent thermal relaxation.

22.2.1  mAgnetic fielD–mAgnetic 
nAnopArticle interActions

The strategy of using MNPs to actuate cells mechanically 
can be traced back to the year 1920, when W. Seifriz17 pro-
posed the use of ‘minute particles of magnetic material’ to 
measure the elasticity of the cell cytoplasm. Since then, a 
large amount of theoretical and experimental work on mag-
netically loaded cells has been reported.18 The physical con-
cept behind this approach is based on the interaction between 
the magnetic (dipole) moment m of MNPs and a spatially 

inhomogeneous magnetic field B,19 as described by Equation 
22.1. For a spherical MNP composed of magnetite, Fe3O4, 
with diameter d = 50 nm, a magnetic moment of m ≈ 7 × 
10−17 Am2 can be estimated.20 Assuming a commercially 
available NdFeB magnet (e.g. type N50) of cubic shape with 
dimensions 1 × 1 × 1 cm3, a single MNP located at a distance 
of 5 mm from the surface will experience an average force 
F ≈ 2.1 × 10−15 N. This force is larger than the gravitational 
force (~10−18 N).21 In addition, biomedical applications imply 
that the MNPs are immersed in a fluid and therefore the 
Stokes law predicts that any particle moving with velocity 


v  will experience a drag force 


FD  given by 




F rvD = 6πη , 
where η is the viscosity of the medium and r is the radius of 
the MNP. This force is size-dependent, but for the applica-
tions in quasi-stationary conditions such as those existing 
in a cell culture, the velocity factor makes this force small 
enough to discard it.22 On the other hand, diffusional forces 
due to Brownian motion are also size dependent and can-
not be neglected in colloidal systems at room temperature. 
A complete analysis of the influence of Brownian forces of 
single-domain MNPs under external magnetic field requires 
the use of stochastic approaches, such as the stochastic 
Eulerian–Lagrangian method, which is beyond the scope of 
the present description. Summarizing, to produce a measur-
able pulling-magnetic force, the MNPs have to be designed 
to maximize their magnetic moment m under the B values 
applied, and the magnetic field profile must be planned to 
produce enough field gradients for the experimental condi-
tions required.23

22.2.2  physicAl feAtures of mAgnetic nAnopArticles

Two iron oxides, namely magnetite (Fe3O4) and maghemite 
(γ-Fe2O3), are by far the most used materials as a constituent 
of MNPs in the biomedical field.24 These oxides crystallize 
in the cubic spinel structure, where two cationic sites with 
different geometries define the two magnetic sublattices, 
labelled as A and B sites. The cations at A and B sublat-
tices have different atomic magnetic moments and result 
in a noncancelling total magnetic moment, and this type 
of magnetic order is known as ferrimagnetism. The mac-
roscopic behaviour is similar to a ferromagnetic one, with 
remanence (i.e. a net magnetization at zero applied field), 
hysteresis (i.e. magnetization dependence on the magnetic 
history) and magnetic ordering (Néel) temperature. As 
mentioned before, in MNPs with size below the critical 
domain size the formation of domain walls is energetically 
unfavourable and the magnetic state has a single-domain 
configuration. If the MNP’s volume is small enough, the 
thermal fluctuations at room temperature makes the mag-
netic moment to relax within timescales shorter than the 
measuring time, yielding a null-average of the magnetic 
moment.25 This state is known as superparamagnetism. 
The magnetic relaxation of MNPs in magnetic colloids is 
therefore governed by the dynamics of the magnetization 
vector and have been modelled by Usov et al.26 using the 
stochastic Landau–Lifshitz model.
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As mentioned before, the specific properties of a given mag-
netic material must be considered when using MNPs as pull-
ing agents. Specifically, those aspects governing the interaction 
expressed by Equation 22.1 between the magnetic field B and 
the magnetic moment m of the material. Since the material 
properties of the MNPs enter Equation 22.1 through the mag-
netic moment m, it is expected that the resulting magnetic forces 
should be more or less independent on the physicochemical 
environment of the MNPs for a given application. Instead, the 
most relevant parameters are the saturation magnetic moment 
ΜS of the particles and their magnetic anisotropy. Together with 
the average volume V, these parameters will define the mag-
netic response of the material under the magnetic field intensity 
H applied. If the MNPs have a single-domain configuration, the 
magnetic moment measured under a given H value is given by

 M T H M M VH k TS S B( , )   ( ),= L /  (22.2)

where ( )x  is the Langevin function, and kBT is the ther-
mal energy factor at temperature T. This expression, together 
with Equation 22.1, show that if the MNPs are small enough 
the thermal fluctuations will render the magnetization small 
therefore decreasing the magnetic force. On the other hand, 
for multidomain MNPs the magnetization is governed mainly 
by domain wall motion and for large H values also by mag-
netic moment rotation within domains. Therefore, the pre-
ferred materials that provide magnetic saturation at low fields 
(and therefore large magnetic forces) would be magnetically 
soft materials (i.e. low magnetic anisotropy) without crystal-
line defects or vacancies, to avoid domain wall pinning.

22.2.3  instrumentAtion: simulAtion AnD 
ApplicAtion of mAgnetic forces

Experimentally, the B profiles required for in vitro experi-
ments can be produced by a suitable configuration of 

permanent magnets (e.g. FeSm5 or NdFeB magnets) as well 
as different types of electromagnets. In most biomedical 
applications, processing conditions require working within 
fluidic phases and in small volumes. These prerequisites 
combine well with the use of microfluidics as a comple-
mentary technique to handle highly stable microflows and 
to fit the small volumes of liquids like culture media for in 
vitro experiments, where the total volumes can be as small 
as 10–9  L. The downscaling of magnetic separators allow 
to integrate them into more complex systems like detection 
devices for diagnostics and clinical assays, environmental 
monitoring, food-contaminant analysis, etc.27–29 Also, small 
sample spaces allow larger field gradients to be applied 
without the need of large magnetic fields.

On the other hand, for larger working spaces the use of 
high-power electromagnets seems to be the only workable 
choice. One of the possible arrangements to combine con-
tinuous sorting and large working volumes is schematized 
in Figure 22.1a, where a superconductor coil of cylindrical 
symmetry surrounds a ferromagnetic matrix immersed in the 
flowing medium. Here the external field provides the large 
intensity of B inside the tube, whereas the ferromagnetic net-
work provides the local inhomogeneity (i.e. field gradient) to 
retain the magnetic particles. The scalability of magnetic sep-
aration by magnetic forces is technically simple, although the 
amounts of energy required at industrial scales make it expen-
sive. In any case, the use of high-gradient magnetic fields is 
being used successfully for treatment of industrial wastewa-
ters and removal of heavy metals.30

At small working volumes (i.e. in vitro or small in vivo 
applications) the adequate choice of the B source will depend 
on the specific details of the experimental setup, but in most 
cases commercially available permanent magnets can produce 
suitable magnetic field gradients of several thousand T/m. A 
simple quadrupole configuration used for magnetic separation 
is produced by four permanent magnets placed on the external 
side of a supporting tube through which the colloid is pumped 

(a)

Ferromagnetic
matrix

Beads suspension

Pump

Matrix filaments

Treated solution

Inlet

Trapped particlesExternal magnet

(b)

Beads collectionMagnet arrangement

Outlet 2

Outlet 1 ∆H

z

x

y

x

FIGURE 22.1 Schematic drawing of two approaches for magnetic separation under continuous flow sorting (a) a high gradient field 
separator based on superconducting magnets and (b) a magnetic quadrupole configuration, frequently used in small-volume applications. 
(Reprinted from Sep. Purif. Technol., 172, J. Gomez-Pastora, X. Z. Xue, I. H. Karampelas, E. Bringas, E. P. Furlani, and I. Ortiz, 16, 
Copyright 2017, with permission from Elsevier.)
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(see Figure 22.1b).31 This configuration produces four regions 
with maximum field along the circular perimeter of the tube, 
whereas B = 0 at the centre.

A similar approach than the one used for magnetic separa-
tion, i.e. the use of the magnetic forces between external dc 
fields and the MNPs magnetic moment discussed above, is 
the basis for magnetic applicators designed for magnetic tar-
geting. However, for MNPs to be concentrated at any internal 
body space there are additional difficulties. First, any realistic 
in vivo situation should consider not only the dynamic nature 
of the circulating blood but also the nonlinear character of 
the systemic paths that will carry the MNPs. In addition, the 
inherent pulling nature of the magnetic forces makes difficult 
to direct a net magnetic force towards an inner body volume 
using an external array of magnetic field sources. A potential 
solution to this problem was proposed through active target-
ing and accumulation of magnetic actuators to neural cells. 
This strategy has been successfully applied to control the 
mammalian nervous system in mice.32

22.3  MAGNETIC ACTUATION 
ON NEURAL CELLS

22.3.1  effects of Dc mAgnetic fielDs 
on neurAl cells

A substantial portion of the early research on biomagnetism 
was devoted to elucidating the influence of static and alter-
nate magnetic fields at cellular and tissue levels.33 Such inves-
tigations have disclosed many biochemical pathways that 
are influenced by a magnetic field. Only a small number of 
those investigations were related to physiological mechanisms 
in vertebrates under the influence of static magnetic fields, 
describing how reactions to magnetic stimuli were effected 
through the CNS.34 The physical mechanism by which an 
exogenous magnetic field affects the biological pathways in 
eukaryotic cells is still under discussion, although there is 
long-standing experimental evidence that demonstrates the 
measurable effects on cell proliferation, migration and adhe-
sion.35 The existence of the earth’s magnetic field (H = 39.8 
A/m or 500 mG) provides examples of biological interactions 
that are well documented in bees, pigeons, bacteria and fish. 
The phenomena involving the capacity of a living organism 
to perceive or detect such weak magnetic field is known as 
magnetoreception.36

Also, the effects of intense static magnetic fields (i.e. up to 
several MA/m, or kGauss) have been studied in several differ-
ent animal species, with different results, a relation between 
long-term application of strong static fields and biological 
pathways has been suggested. For example, experiments in 
young mice subjected to strong DC magnetic fields (i.e. H = 
334 kA/m or 4200 G) have demonstrated measurable effects 
including growth retardation, changes in the population 
of bone marrow-derived monocytes, and increased rates of 
appearance of spontaneous cancer.37,38

As mentioned above, there is abundant experimental evi-
dence that the application of static (or very low-frequency) 

magnetic fields on eukaryotic cells affects many biochemical 
pathways significantly, including cell proliferation, adhesion35 
and expression of heat-shock protein.39 In the case of neural 
cells, the influence of magnetic fields could be expected on 
those mechanisms involving the exchange of ions through the 
cell membrane. Theoretical explanations40 for these effects 
were proposed through perturbation effects of the magnetic 
field on moving charges. Since these neural communication 
mechanisms involve electrical signaling through ion channels 
at the cell membrane, it seems reasonable to expect that mag-
netic fields can influence the dynamics of cross-membrane ion 
pumping, impacting on cell differentiation and cell growth. 
However, there is experimental evidence excluding measur-
able effects on Na+ and K+ transmembrane currents down to 
one part in 1000.46 On the other hand, it has been suggested 
that changes in nerve activity when exposed to strong DC 
magnetic fields (e.g. >100 kA/m) could be related to the dia-
magnetic anisotropy of some molecular components of the 
cell membrane. Under high magnetic fields, it is expected that 
the anisotropy axis of the membrane molecules will align 
along the field direction, and this realignment would suffice 
to modify the ion channel activity.

It is interesting to note that the two mechanisms differ on 
their physical basis: the action of 



B  on moving charges ±q 
is the Lorentz force 







F q v B= ± ×( )  applied to those charges 
with velocity 



v, whereas the diamagnetic alignment of mem-
brane molecules is the response of the closed-shell orbital 
atomic moments to the applied magnetic field. These differ-
ences make it in principle possible to design experiments to 
identify which mechanism will contribute under specific con-
ditions. Both effects could be significant under strong fields, 
but the different B-thresholds at which these mechanisms start 
to operate and to what extent they are independent remain to 
be elucidated. In any case, the experimental evidence support-
ing the influence of static magnetic fields on neural cells is 
already quite solid, and explains why most reports on clinical 
effects of magnetic fields refer to the nervous system.47

Due to the complex interaction between electric and mag-
netic phenomena, the disentanglement of each source when 
a given (electrical or magnetic) experiment is performed is 
always challenging. The classification of ‘pure’ magnetic or 
electrical stimulation can be useful sometimes but the elec-
tromagnetic theory makes this distinction unfitting in the 
sense that a ‘pure’ static field B can modify the distribution 
of electrical charges existing in any material. Regarding bio-
logical materials (e.g. membranes, tissues, body fluids) it has 
been shown that the most influential physical parameters to be 
considered to affect cell functions are the electric and mag-
netic field amplitudes (E0 and H0, respectively), the intensity 
of induced currents, the induced voltage and the frequency.43 
In any case, general considerations indicate that the time scale 
of the electromagnetic stimulus must be of the same order of 
magnitude than the physical mechanism involved because 
otherwise the time average of the shorter magnetic pulses on 
the much larger time scales of biochemical dynamics in a cell 
membrane would produce a null effect out by simple time 
averaging any effect. For this reason both DC and extremely 
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low-frequency magnetic fields are the usually chosen regimes 
to influence the response of biological systems.

Some works published in the 1980s about a ‘cyclotron res-
onant effect’ attempted to link weak electromagnetic fields 
to an enhanced Ca2+ transport through cell membrane due 
to resonant mechanisms.44 However, attempts to replicate 
this effect were unsuccessful.45 Moreover, theoretical con-
siderations about the influence of viscosity and molecular 
collisions in fluid biological media seem to preclude any pos-
sibility of resonance associated with ion trajectories in such 
magnetic fields.

Iron is a relatively abundant element in most living organ-
isms. Therefore, it is not surprising that biomineralization of 
iron, i.e. the biochemical processes through which an organ-
ism synthesizes hard minerals have made magnetite (Fe3O4) 
ubiquitous across both kingdoms of prokaryotes and eukary-
otes including bacteria, protozoa and mammals. The occur-
rence of Fe3O4 crystals in the human brain resulting from iron 
biomineralization was first reported by Kirschvink,46 who 
showed the presence of 20–50 nm crystals both isolated and 
forming linear structures similar to those typical of magneto-
tactic bacteria. The presence of nanostructured magnetite in 
the brain has been related to NDs in which disruption of nor-
mal iron homeostasis occurs.47 The excess of iron and senile 
plaques found in brain tissue seem to support this idea.48 It 
is interesting to mention that a recent study has suggested 
airborne pollution as an exogenous source of the Fe3O4 NPs 
found in brain tissue,49 which poses the question of whether 
the major sources of MNPs in the brain have an internal or 
external origin. In any case, the idea that these magnetite 
MNPs within the brain could have relation with some of the 
biological effects related to AC magnetic fields in humans50 
merits further investigation.

22.3.2  mAgnetic forces cAn ActuAte on cells

Although magnetic fields do have an influence on neural tis-
sue, it is evident from the previous discussion that the nature 
of the interaction makes difficult to envisage their uses for 
remote tethering or actuation. Magnetic actuation is the action 
of influencing the behaviour of a cell by magnetic forces, gen-
erated from MNPs previously uploaded/attached to the cell.

To have the capacity of influencing axonal growth, mag-
netic forces must produce an effect larger than the drag forces 
within the cell, even at the nanometric scale. Magnetic forces 
originate in the interaction between the magnetic moment 
of MNPs and the magnetic field, as already discussed in 
Section 22.2.1, together with drag forces. For cell actuation 
a way to overcome the effects of drag forces is through the 
design of the MNPs. Furthermore, novel therapies that use 
exogenous cells (cell therapy) to gain lost functionalities in 
target tissues or organs have been proposed, which provide a 
fascinating tool for concurrent uses for MNPs. For example, 
stem cell-based treatments have been established as a clinical 
standard of care for some conditions, such as hematopoietic 
stem cell transplants for leukaemia and epithelial stem cell-
based treatments.51 Although the scope of potential cell-based 

therapies has expanded in recent years due to advances in 
basic research, attempts to develop a cell-based intervention 
into an accepted standard of medical practice are particularly 
difficult processes for different reasons. One of the unre-
solved issues relating to the clinical use of transplanted cells 
concerns the localization of these cells to the diseased site, 
since only a small percentage of the implanted/injected cells 
in vivo reach the desired location.52

There is enough evidence that for neural or neural pre-
cursor cells MNPs can be incorporated into the cytoplasm 
in large amounts. For example, the iron uptake in the oligo-
dendroglial cell line OLN-93 has been reported53 to increase 
the contents of intracellular iron up to ≈200 times the basal 
concentration in a concentration-dependent way. A com-
parative study on internalization in primary and immortal-
ized cells showed that immortalized PC12 cells have a more 
intense activity than primary cells regarding MNP uptake.54 
The same study revealed that in a mixed (neuronal and glial) 
primary cell culture the predominant uptake of MNPs was 
done by microglia, whereas the number of astroglia and oli-
godendroglia incorporating MNPs was lower. Moreover, 
comparison against organotypic cocultures of spinal cord and 
peripheral nerve grafts yielded MNP-uptake levels similar to 
those of the primary cell cultures.54

The way by which a MNP is delivered to the cytoplasmic 
space can be very different depending on the type of cells or 
MNPs involved. Little work has been reported on the mecha-
nisms of MNP uptake by neural cells and, more generally, 
about the interactions between MNPs and neural cell lines. 
Tay et al. reported a meticulous study on the interactions of 
MNPs with primary cortical neural networks in different 
developmental stages.55 These authors found that chitosan-
coated MNPs were internalized whereas starch-coated MNPs 
were not, the latter being attached to the cell membrane. By 
inhibiting selectively different uptake mechanisms, they con-
cluded that the mechanisms by which chitosan-coated MNPs 
were incorporated was micropinocytosis and clathrin-mediated 
endocytosis.

The latest evolution of nanoscience into the neuroscience 
field has provided incipient solutions for the remote guidance 
of functional cells related to the above-mentioned cell thera-
pies.56,57 The ability to introduce MNPs into cells and mag-
netize them was the first step towards remote manipulation 
by magnetic fields to carry healing cells to the desired site, 
enabling the cells to colonize and differentiate into any desired 
cell type.58 Also, different approaches based on magnetic 
forces to destroy target (cancer) cells have been reported. For 
example, Kim et al.59 have succeeded in provoking cell dam-
age using magnetic microdisks that could be forced to rotate 
by an external magnetic field of very low frequency (i.e. a few 
hertz) due to their vortex structure. The mechanical rotation 
was reported to compromise the integrity of the cell mem-
brane, triggering an apoptotic mechanism. More recently, the 
same concept has been successfully applied in vivo to reduce 
an intracranial glioma tumour with no observed side effects.60

However, the rationale for remote guiding of axonal growth 
includes not only the successful uptake of the MNPs by the 
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target cells. Given the large number of cells that participate in 
the repair after nerve injury, there is the question of whether 
some specific cell types could be more efficient in internal-
izing the MNPs injected than the target neurons. Most of the 
previous reports about the effects of NPs on neural cells (e.g. 
cell uptake, toxicity, etc.) have been conducted on immortal-
ized cell lines (see for example Riggio et al.61) and only a 
few studies have been performed to investigate the effects of 
MNPs on primary cells of the nervous systems.61,62

The design of any magnetically guided axon regenera-
tion therapy must consider how the external magnetic forces 
will act on an MNPs-loaded cell. The basis of the remotely 
guided neural regeneration involves (a) physical mechanisms 
to direct axonal regrowth along selected directions, and 
(b)  biochemical mechanisms to stimulate axonal elongation 
across the nerve lesion site.63 Also, the molecular guidance 
of axonal growth based on high-affinity molecules (such as 
growth factors and extracellular matrix proteins) can orientate 
growing cells,64 although no therapeutic outcome has yet been 
reported.

Regarding physical guidance, autologous and heterologous 
tissue grafts or bioderived materials as scaffolds have been 
partially successful in providing growth conduits to guide 
the nerve during regeneration.65,66 On the other hand, the uses 
of contactless magnetic forces have been much less studied. 
Some studies have been reported to be effective in both axon 
orientation and growth,67 although these results are up to now 
limited to in vitro experiments. For in vitro situations, there 
are specific adhesion forces chemically sticking the cells to a 
substrate,68 and therefore interaction of MNPs with H must be 
strong enough to overcome the adhesive forces, which have 
been reported to be in the 1–200 pN range depending on the 
measuring conditions.69

22.4  NERVE REPAIR

22.4.1  mAgnetic guiDAnce

The concept of magnetically assisted nerve repair is based 
two complementary actions that can be performed when 
MNPs are used. The first action is related to the interactions 
with a remote magnetic field, which generates a pulling force 
from the MNPs to the growing axons. The second, i.e. the 
possibility of having neurotrophic factors on the MNP’s sur-
face, would make it possible to stimulate growth rates dur-
ing the application. This synergistic approach for nerve repair 
using MNPs is schematically illustrated in Figure 22.2. It is 
evident that the complexity of the actual biological process, 
which includes a plethora of different cell types acting on the 
injured nerve, makes it necessary to verify some hypotheses 
regarding the effects and fate of MNPs once they are injected 
into the injured tissue. For example, Schwann cells are recog-
nized as helpful agents promoting axonal regeneration in the 
PNS while astrocytes and oligodendrocytes in the CNS are 
not. Therefore, the successful delivery of MNPs to the target 
axon will depend on the relative affinity of these cell types for 
the MNPs.

Although mechanisms involved in axonal growth are not 
completely understood, there is increasing evidence that 
mechanical force generation is a crucial process for both axo-
nal guidance and lengthening.70 The existing literature sug-
gests that neurons and their axons possess fine sensors to sense 
and transduce mechanical force in axon initiation/elongation/
guidance. The involvement of mechanical tension in the mor-
phogenesis of the nervous system was clear in the late 1970s 
when pioneering experimental work revealed that neuronal 
processes in vitro are under tension.66 Later, different teams 
demonstrated that the external application of mechanical 
tension alone is sufficient to initiate de novo axonal sprout-
ing. There is a consensus that neurite elongation is a linear 
function of the applied force and its rate has been found to be 
similar to both PNS and CNS (about 0.1–1 μm h–1 per pN of 
applied force). MNPs, which develop a strong magnetic force 
when an external magnetic field is applied, could be used to 
induce an extremely rapid regeneration of the injured axons, 
purely directed by mechanical forces on MNP-labelled axon 
tracts. Fass and colleagues used magnetic beads to precisely 
develop forces in the piconewton range, finding cells able to 
sustain mechanical-driven elongation with applied tensions 
between 15 and 100 pN.71 In addition to the evidence that 
mechanical tension can induce elongation of neurite or pro-
cess initiation, recently its influence on axonal guidance has 
also been investigated. It was demonstrated in a neuron-like 
cell line that MNPs can be used to gain control of directional 
movements of neurites. Specifically, by using magnetic nano-
beads, it was found that the application of 0,5 pN force on 
cell neurites was enough to preferentially align them along the 
direction imposed by the mechanical force.7 Moreover, using 
a model based on the effects of the applied forces acting on 
the receptor–ligand bond, dynamic process of bond loading, 
breaking and formation during cytoskeletal movements, the 
authors could reproduce the experimental data successfully.63 
A basic setup for this experimental approach using four par-
allel NdFeB magnets is depicted in Figure 22.3, where the 
micrograph (inset) shows the preferential growth along the 
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FIGURE 22.2 Schematic illustration of magnetically assisted nerve 
repair process. The injured nerve is targeted by the magnetic NPs, 
and then a remote magnetic field guides axonal growth along the field 
lines. The particles, in turn, could be surface-functionalized with 
growth-stimulating molecules to accelerate the healing.76 (Reprinted 
from Nanomed-Nanotechnol, 10, C. Riggio et al., 1549, Copyright 
2014, with permission from Elsevier.)



402 Clinical Applications of Magnetic Nanoparticles

field lines (yellow arrow), quantified through the angle θ 
between H and the direction of the main dendrites.

The ability to generate mechanical tensions on neurites, 
to promote elongation, and to guide directional movement 
could make MNPs a powerful strategy to address the dream 
of axonal re-innervation from the CNS to the desired tar-
get, e.g. the neuromuscular junction. The MNP-mediated 
mechanical force has also been used to manipulate neuro-
nal compartments. MNPs have been used to bind filopodia 
cell membrane of retinal ganglion cell growth cone and to 
elicit axonal growth and guidance by exerting mechanical 
tension with an externally applied magnetic field.72 MNPs 
functionalized with TrkB agonist antibodies have been used 
to target the particles to signaling endosomes, to manipu-
late them by focal magnetic fields, and to alter their local-
ization in the growth cone, thus deregulating growth cones 
motility and neurite growth.73 The synaptosomes of brain 
nerve terminal labelled with MNPs were spatially manip-
ulated with external magnetic field without affecting the 
key characteristics of glutamatergic neurotransmission.74 
Recently, manipulation via MNP has also been performed 
at the molecular level, by influencing protein segregation 
during axonal development, in vitro and in vivo, to dic-
tate axon formation.75 In general, MNPs offer the distinct 
advantage of being easily functionalized with ligands for 
high affinity binding to specific neuronal cell types, com-
partments or proteins,76 which makes particularly effective 
present and future strategies of neuronal manipulation via 
MNP-induced mechanical forces. MNPs have been used 
also to manipulate the extracellular environment, which 
plays a key role in the process of nerve regeneration. 
Recently, magnetic particles have been used to orientate 

collagen fibres under an external magnetic field, opening 
the possibility to develop oriented scaffolds to strongly 
promote the process of functional reinnervation.77

22.4.2  neuroprotection

Functionalization of MNPs with neurotrophic factors to 
promote neuron survival/growth can also be achieved.78 
Although the free growth factors have a very short half-life 
(e.g. few minutes)79 in vitro studies have proved that the con-
jugation to iron oxide NPs can prolong the biological activ-
ity of NGF, glial cell-derived neurotrophic factor (GDNF) 
and basic fibroblast growth factor (FGF-2).79,80 An additional 
advantage of MNPs is that they can be remotely guided by 
magnetic forces. They have also been used as magnetically 
guided nanocarriers for spatially controlled drug delivery, 
e.g. for local release of anaesthetics for local nerve block81 or 
for targeting neurotrophic factors to the blood–brain barrier 
(BBB).82 The idea of improving neuroprotection using drug-
loaded nanocarriers through the BBB is many years old.83 
The capability of a nanometre-sized device with a therapeutic 
payload to cross the BBB is appealing since about 95% of the 
therapeutic drugs for treating CNS diseases fail to do so in 
the brain.84 This is mainly related to the impenetrability of 
the BBB for such molecules. Several strategies to overcome 
this problems using MNPs have been reported, based on the 
functionalization of the particles with peptides, proteins and 
similar small molecules.82

However, the actual neurotoxicity levels of MNPs in 
vivo are not yet completely known. It has been reported 
that MNPs entering into the body fluid system can result 
in adverse effects on the CNS.85 Also, systemic administra-
tion of MNPs has been reported to induce breakdown of the 
BBB, an effect not only exclusive of magnetic particles but 
NPs in general.86 Different interactions between MNPs and 
CNS in physiological vs. pathological conditions cannot be 
also excluded. A recent work showed that NPs can target 
myeloid cells in epileptogenic brain tissue, suggesting their 
use for detecting immune system involvement in epilepsy 
or for localization of epileptic foci.87 A related, more subtle 
question of whether MNPs influences the physiological brain 
responses under pathological conditions has been addressed 
only rarely in the literature, but is certainly a subject that 
merits investigation.

22.4.3  mAgnetofection

The concept of transfection can be defined as the procedure 
by which any type of genetic material from a foreign source 
is introduced into a different mammalian cell. When deal-
ing with DNA, this process enables the expression of proteins 
from the original source by the host cell’s machinery. The 
transfer of the genetic material can be done by different meth-
ods, in many cases using coadjuvant molecules to improve the 
transfection rates. One example is the use of cationic lipids 
(e.g. Lipofectamine®) with a positively charged head group 
that favours DNA condensation and also facilitates the fusion 

(a)
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FIGURE 22.3 (a) Representation of the magnetic field applied to 
the neural PC12 cell cultures. The magnetic field was homogeneous 
in the Y and X direction (0.19–0.20 T). The maximum magnetic 
field gradient was 0.019 T/m. (b) Image of the support where the T-25 
flasks were incorporated and an example of the images obtained by 
an optical microscope in the area where the cells are analyzed. The 
image shows the analysis of the neurite direction; each neurite is 
manually traced and then the angle formed between the neurite and 
the direction of the magnetic field (θ) is recorded.
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of the liposome/nucleic acid with the cell membrane prior to 
the endocytosis.88

The first experiments on the use of magnetic fields to 
enhance nucleic material delivery were reported by C. 
Mah  et  al.,89 and soon after the term ‘magnetofection’ 
was coined by C. Plank’s group.90 Since then, this concept 
of MNP-mediated transfection has been customized and 
improved regarding the dose–response ratios and transfection 

rates. Today, there are many commercially available kits that 
provide user-ready MNPs and reagents for routine labora-
tory applications such as CombiMag™ (Ozbiosciences SAS, 
France) or Magnetofection™ (Chemicell GmbH, Germany). 
The basic mechanism is depicted in Figure 22.4: through the 
use of an external magnetic field gradient, the forces acting on 
the magnetic vectors increase the contact time of the genetic 
material and the cell membrane, increasing the uptake dynam-
ics of the cell membrane and thus the efficiency of nucleic 
acid delivery. Some simple physical models have been pro-
posed for this interaction, based on a drift-diffusion equation 
through the cell membrane,91 but a complete model account-
ing for the different physiological pathways is still lacking. 
However, there is an emerging consensus that for these appli-
cations the surface chemical composition of the MNPs is a 
key factor determining the final efficiency, irrespective of the 
details of the magnetic structure of the magnetic cores.

Recently, a method to increase transfection in neural stem 
cells (NSCs) using MNPs and very low frequency (4 Hz) 
magnetic fields demonstrated that transfection efficacy could 
be improved significantly, while keeping the differentiation 
capabilities unaffected.92 As shown from the differentiation 
profiles in Figure 22.5, magnetofected NSCs show positive for 
all transfected markers. Moreover, the authors reported that 
magnetofected NSCs displayed disrupted cell membranes as 
compared to control cells. Although the physical mechanisms 
involved are not completely understood, experimental data 
suggest that the higher efficiency under magnetic fields is due 
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FIGURE 22.4 Schematic illustration of the magnetofection prin-
ciple. The nucleic acid and the magnetic NP form the magnetic 
nanovector complex that is pulled towards the cell by a noncontact 
magnetic force from an external magnetic field gradient. The forces 
increase the rate of contact events between the vectors and the cell 
membrane, thus improving the uptake dynamics of the cell.
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FIGURE 22.5 Triple merged images of magnetofected ( f = 4 Hz) neural stem cells (NSCs), postdifferentiation showing cells positive for 
GFAP (a), Tuj-1 (b), and MBP (c). GFP expressing GFAP+ cells are seen in (a, arrows) and GFP+ cells with the morphological appearance of 
astrocytes in (b and c, arrows). (d–f) Bar charts showing proportions of GFAP, Tuj-1, and MBP positive cells, n = 4 cultures. None: no field, 
F(N): frequency of oscillation, C: control, T: transfected. (Reprinted from Nanomedicine: Nanotechnology, Biology and Medicine, 9, C. F., 
Adams, M. R., Pickard, and D. M., Chari, 737, Copyright 2013, with permission from Elsevier.)
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to both an increase of the MNP-cell interaction time and a 
frequency-driven stimulus of the endocytic activity of the cell 
membrane, as depicted in Figure 22.6.92

22.4.4  mAgnetotrAnsDuction

Similarly to the use of magnetic forces, the use of viral vectors 
has provided a fruitful solution to increase the low efficiency 
of nonviral gene vectors, a technique known as transduction. 
The term was coined more than 50 years ago by Zinder et al.,93 
in their genetic studies on Salmonella typhimurium and has 
been improved notably along the last decade.94 Viral vectors 
have been intensively used as a tool for fighting NDs, through 
the delivery of neurotrophic factors that prevent degenera-
tion and enhance recovery of target neurons. The potential 
of this technique for clinical uses is apparent, especially in 
the field of NDs. For example, two powerful neuroprotective 
molecules for the treatment of neurodegenerative pathologies 
affecting both motor and cognitive functions are GDNF and 
insulin-like growth factor I (IGF-I).95 In spite of some promis-
ing results, the efficiency of viral (and nonviral) vectors for 
therapeutic gene delivery into the brain still remains one of 
the limiting factors to be overcome before clinical trials can 
be safely implemented. Additionally, most protocols currently 
in use for nucleic acid delivery96 require some improvement 
of either the efficiency or specificity of nucleic acid delivery.97

Based on the concepts of magnetofection, i.e. the use of 
magnetic forces on MNPs to improve transfection efficiency, 
therapeutic approaches against NDs have begun to use mag-
netically labelled viral units to deliver genetic material. The 
construction of magnetic viral vectors (usually adenovirus 
or lentivirus) for a magnetic field-assisted viral transduc-
tion has been reported for some years now. This technique is 
known as magnetotransduction, and is often related (but not 
restricted) to strategies for delivering neuroprotective mol-
ecules to target cells as a therapy against ND diseases. One 
of the main goals of this approach is related to the enhance-
ment in the levels of neurotrophic factors delivered, since it 
is accepted that an increase in the delivered concentration of 

these factors can prevent neural degeneration and enhance 
recovery of remaining neuron neuroprotective molecules at 
the target site.98

In magnetotransduction, the MNPs also work as the ‘pull-
ing’ agents when conjugated with viral vectors to construct a 
magnetic-viral vector of higher efficacy than virus or MNPs 
alone. Some configurations using Fe3O4-based MNPs and 
recombinant adenoviral vector harbouring reporter genes have 
been already used to magneto-transduce glial and neuronal 
brain cells (ependymal, hypothalamic and substantia nigra) 
with high efficiency.99 Some proof-of-principle experiments 
with MNP-AAV (adeno-associated viral) vectors showed par-
tial success,100 but the need for further optimization of vector 
formulation remains, especially if neuroprotective and neu-
rotrophic factors (e.g. IGF-1, GDNF) are to be used for clini-
cal applications to ND diseases. If successful, this approach 
could represent a major improvement towards new therapies 
for NDs.

22.4.5  scAvenging strAtegies

When the CNS is affected, nerve injury results in a disrup-
tion of the blood–spinal cord barrier. Moreover, the damage 
induced in surrounding blood vessels stimulates a prolif-
eration of Schwann cells, leucocytes, monocytes and mac-
rophages around the nerve lesion that provokes the loss of 
nervous tissue. At the cellular level, axons show deteriorated 
myelin layers, and the resulting growth-inhibitory myelin 
debris is only partially removed by macrophages. Therefore, 
a containment/scavenging protocol is desired before actual 
nerve regeneration. Gathering those cells that are activated in 
response to pathological situations can be achieved by the use 
of remote magnetic forces on the injured area. The incorpora-
tion of MNPs by scavenger cells has been already observed 
in organotypic culture,61 and therefore it can be expected that 
similar targeting can be achieved in vivo.101 Indeed, the in 
vitro preloading of macrophages and the subsequent infiltra-
tion in vivo for magnetic resonance imaging of injured nerve 
has been successfully tested some years ago.102 It is, therefore, 

Vertical component: Magnetic field induced
sedimentation of MNP labelled spheres

Horizontal component: Stimulation of
endocytosis in stem cell membrane by
oscillating magnetic fields

FIGURE 22.6 Proposed mechanism of transfection of neurospheres. Schematic diagram illustrating a hypothetical model to explain the 
mechanism of oscillating field enhancement of transfection in neurospheres.110 (Reprinted from Nanomedicine: Nanotechnology, Biology 
and Medicine, 9, C. F., Adams, M. R., Pickard, and D. M., Chari, 737, Copyright 2013, with permission from Elsevier.)



405Magnetic Nanoparticles for Neural Engineering

a matter of time before similar magnetic labeling of scav-
enger cells can be used for improved magnetically driven 
nerve repair. MNPs possess themselves scavenging proper-
ties. In particular, their capacity to scavenge free radicals has 
been used to attenuate oxidative damage induced by H2O2 
in SCI rats when localized by an external magnetic field.101 
Additionally, their functionalization with biomolecules can 
confer new scavenger capabilities, as recently demonstrated 
by MNP functionalization with O-methyl-β-cyclodextrin to 
reduce the extracellular level of L-glutamate in brain nerve 
terminals.103

22.4.6  cell therApies

Cellular therapies exploit the regenerative potential of 
cells for nerve repair.104 They are considered promising, 
especially for the repair of CNS injuries and long gaps in 
the PNS. Several cell types such as stem cells, Schwann 
cells, OECs have been utilized as transplantable cells in 
nerve regeneration, demonstrating improved regenerative 
outcomes105,106 but, similarly to any cell-based strategy, 
this approach suffers from drawbacks, which limit the 
translation from experimental to clinical stages. A great 
help for implementing safe and effective cell transplanta-
tion could be the development of strategies for cell hom-
ing and cell tracking, allowing for monitoring of the fate 
of the transplanted cells and to retain them in the injury/
pathology site, maximizing the therapeutic effects while 
avoiding dangerous migrations to ectopic sites. Several 
lines of evidence suggest that MNPs hold a great potential 
to overcome these limitations. Recently, a clinical study* 
has demonstrated in healthy volunteers that MNP can be 
used for in vivo tracking of magnetically labelled human 
mononuclear cells using MRI scanning. Following intra-
venous administration, the distribution of iron-labelled 
cells was monitored as well as their ability to migrate to 
a site of inflammation. Cell labeling with MNPs can be 
thus easily imaged via MRI and this approach offers the 
distinct advantage to correlate the study outcome to the cell 
localization at the site, or biodistribution in the organism. 
MNPs have been used to label oligodendrocyte precursor 
cells, which showed high promise as a transplant popula-
tion to remyelinate nerve fibres and promote regeneration 
in the CNS. Indeed, clinical trials using these types of cells 
have been initiated in some areas.107 The migration of MNP 
labelled OPCs was followed via MRI, when injected into 
the spinal cord of myelin-deficient rats108 or after trans-
plantation into adult rat brain.109 Magnetic manipulation is 
also an advantageous method for guiding cells remotely. 
Neural progenitor cells110 or olfactory ensheathing cells111 
have been labelled with MNPs and magnetically localized 
to promote axon growth in organotypic cocultures. This 
approach was also used in vivo to remotely guide MNP 
labelled stem cell in the spinal cord of SCI mice, demon-
strating enhanced localization and axon regeneration.

* www.clinicaltrials.gov. Study ref. NCT01169935

22.5  OUTLOOK FOR THE FUTURE

There are several nanotherapies already proposed as sub-
stitutes for (a) surgical nerve grafting after peripheral nerve 
injury, (b) pharmacological treatment after drug abuses and 
(c) neuroprotective drug delivery.112–114 However, there are 
no reports to date that can show conclusive clinical improve-
ments over the established surgical procedures. The near 
future will probably see new nanotherapies as coadjuvant 
protocols. MNPs have already opened new paths for noninva-
sive therapies based on the exploitation of the remotely driven 
mechanical forces on MNP-loaded neurons. The ability of 
these approaches to promote migration and axonal elongation/
growth have already passed the first proof-of-concept chal-
lenges, but many fundamental questions are yet unresolved. 
It is also clear that a ‘second generation’ of enhanced MNPs 
is required offering minimum toxicity and better reproduc-
ibility. A major issue still not addressed, which will determine 
the final efficacy of these magnetic vectors, is the creation 
of a flexible surface for functionalization with neurotrophic/
neuroprotective factors. If this flexible platform is developed, 
it will open boundless possibilities for novel molecular thera-
pies, as well as the basis (together with multipotent stromal 
cells) for more effective cell therapies.
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AD, see Alzheimer’s disease (AD), noninvasive 
guidance scheme of magnetic 
nanoparticles for drug delivery in

AFM, see Atomic force microscopy (AFM)
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biomedical applications, 53–73
animal, MNPs in, 55–56
apoferritin, 58

bioinspired synthesis of MNPs, 58–63
biomineralization of ferritin, synthesis of 

MNPs inspired by, 58–59
cancer diagnosis and therapy, 63–67
exploring biomineralization for synthesis of 
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high-gradient magnetic concentrator, 181
high-gradient MS, 177–178
hook effect, 188
hydrodynamic effect, 191–192
low-gradient MS, 178–181
magnetic deposition microscopy, 181
neodymium ferrum boron magnet, 177
particle concentration, 185–188
particle shape, 189–190
particle size, 183–185
prozone effect, 188
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DDT, see Direct drug targeting (DDT)
Degrees of freedom (DOF), 321
DFT, see Discrete-time Fourier transform (DFT)
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magnetic silica, 169
lower critical solution temperature, 168
magnetothermal responsive drug release via 

thermoresponsive gatekeepers, 168
nonporous magnetic silica composites 

with drug release actuated by 
magnetothermal effects, 162–163

pH-responsive release from drug-loaded 
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FACS, see Fluorescence-activated cell sorting 
(FACS)

Faraday’s law, 251, 322
FBS, see Foetal bovine serum (FBS)
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intracellular IONP levels and cellular 

responses, 290–293
IONP toxicity overview, 289–293
magnetic core, influence of, 293
reactive oxygen species, induction of, 290
surface coatings, influence of, 293–297

Hydrodynamic focusing, 219
Hydrophilic–lipophilic balance (HLB), 86
Hyperthermia, see Magnetic hyperthermia, 

smart nanoparticles and the effects 
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